Advanced Computing in the Age of AI | Tuesday, September 17, 2024

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0 

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world’s largest datacenters and fastest supercomputers are built.

The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0 – that eliminates more chokepoints that slow down computation in enterprise computing and datacenters.

The new spec provides a communication link between chips, memory and storage in systems, and it is two times faster than its predecessor called CXL 2.0.

CXL 3.0 also has improvements for more fine-grained pooling and sharing of computing resources for applications such as artificial intelligence.

CXL 3.0 is all about improving bandwidth and capacity, and can better provision and manage computing, memory and storage resources, said Kurt Lender, the co-chair of the CXL marketing work group, in an interview with HPCwire.

Hardware and cloud providers are coalescing around CXL, which has steamrolled other competing interconnects. This week, OpenCAPI, an IBM-backed interconnect standard, merged with CXL Consortium, following the footsteps of Gen-Z, which did the same in 2020.

CXL released the first CXL 1.0 specification in 2019, and quickly followed it up with CXL 2.0, which supported PCIe 5.0, which is found in a handful of chips such as Intel’s Sapphire Rapids and Nvidia’s Hopper GPU.

The CXL 3.0 spec is based on PCIe 6.0, which was finalized in January. CXL has a data transfer speed of up to 64 gigatransfers per second, which is the same as PCIe 6.0.

The CXL interconnect can link up chips, storage and memory that are near and far from each other, and that allows system providers to build datacenters as one giant system, said Nathan Brookwood, principal analyst at Insight 64.

CXL’s ability to support the expansion of memory, storage and processing in a disaggregated infrastructure gives the protocol a step-up over rival standards, Brookwood said.

Datacenter infrastructures are moving to a decoupled structure to meet the growing processing and bandwidth needs for AI and graphics applications, which require large pools of memory and storage. AI and scientific computing systems also require processors beyond just CPUs, and organizations are installing AI boxes, and in some cases, quantum computers, for more horsepower.

CXL 3.0 improves bandwidth and capacity with better switching and fabric technologies, CXL Consortium’s Lender said.

“CXL 1.1 was sort of in the node, then with 2.0, you can expand a little bit more into the datacenter. And now you can actually go across racks, you can do decomposable or composable systems, with the … fabric technology that we’ve brought with CXL 3.0,” Lender said.

At the rack level, one can make CPU or memory drawers as separate systems, and improvements in CXL 3.0 provide more flexibility and options in switching resources compared to previous CXL specifications.

Typically, servers have a CPU, memory and I/O, and can be limited in physical expansion. In disaggregated infrastructure, one can take a cable to a separate memory tray through a CXL protocol without relying on the popular DDR bus.

“You can decompose or compose your datacenter as you like it. You have the capability of moving resources from one node to another, and don’t have to do as much overprovisioning as we do today, especially with memory,” Lender said, adding “it’s a matter of you can grow systems and sort of interconnect them now through this fabric and through CXL.”

The CXL 3.0 protocol uses the electricals of the PCI-Express 6.0 protocol, along with its protocols for I/O and memory. Some improvements include support for new processors and endpoints that can take advantage of the new bandwidth. CXL 2.0 had single-level switching, while 3.0 has multi-level switching, which provides more latency on the fabric.

Source: CXL Consortium

“You can actually start looking at memory like storage – you could have hot memory and cold memory, and so on. You can have different tiering and applications can take advantage of that,” Lender said.

The protocol also accounts for the ever-changing infrastructure of datacenters, providing more flexibility on how system administrators want to aggregate and disaggregate processing units, memory and storage. The new protocol opens more channels and resources for new types of chips that include SmartNICs, FPGAs and IPUs that may require access to more memory and storage resources in datacenters.

Read the rest of the story at HPCwire.com.

AIwire